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Jets from two-dimensional symmetric nozzles 
of arbitrary shape 

By BRUCE E. LAROCK 
University of California, Davis 

(Received 4 September 1968) 

A unified approach to the problem of jet efflux from symmetrical channels of 
finite width and possessing a general curvilinear nozzle shape is presented. The 
nozzle may be composed of polygonal and/or curved-arc segments. Precise nozzle 
shapes cannot be initially prescribed, however. The solution is based on the com- 
bined use of conformal mapping and the Riemann-Hilbert solution to a mixed 
boundary-value problem. The selection of an appropriate curvature function is 
described; examples show possible applications. 

1. Introduction 
The potential flow of a fluid jet from two-dimensional vessels of various 

shapes has attracted the attention of hydrodynamicists for over a century. 
As new analytical approaches are devised we come progressively closer to the 
solution of the general problem. As one more step in this direction the present 
paper presents a unified approach to the problem of jet eftlux from symmetrical 
channels of finite width and possessing a general curvilinear nozzle shape. The 
nozzle may be composed of polygonal and/or curved-arc segments. 

Robertson (1965), Gilbarg (1960), and Birkhoff & Zarantonello (1957) each 
survey most of the analytical advances in technique since the introduction of the 
free streamline concept by Helmholtz (1 868) that has made past progress possible. 
Historically the development of solutions for jet efflux from polygonal nozzles 
has preceded the development of solutions applicable to curvilinar nozzles. Flows 
from infinite reservoirs were first studied; the efflux past planar nozzles from chan- 
nels of finite width came next. During this period the techniques of free stream- 
line analysis, that is, the analysis of the class of mixed boundary-value problems 
encountered in this work, were refined and to a degree systematized. The com- 
plex potential and the hodograph or logarithmic hodograph planes were con- 
structed. These planes were related to one another by conformally mapping them 
to a common parametric plane, usually the half-plane, unit circle or the semi- 
circle; the Schwarz-Christoffel transformation came to play an increasingly 
important role here. 

Solutions for the jet efflux from nozzles with curved boundaries were more 
difficult to construct. In part this difficulty occurred because the hodograph plane 
could not be directly constructed for these cases, although at  least one investigator 
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(see Milne-Thomson 1968, p, 312) has initially prescribed the shape of a logarith- 
mic hodograph plane and achieved an interesting result. The fkst solutions were 
given by Cisotti (1908) as an extension of the work of Levi-Civita (1907). For a 
given curve this work involves a polynomial series expansion, with initially 
unknown coefficients, in powers of a parametric variable. In  this connexion 
Villat (191 1) derived an integro-differential equation, the solution of which 
would give the coefficients of the series. However, the direct solution of a problem 
via these inverse methods was difficult. 

Of greater relevance to the present work are two newer publications. In  a recent 
English translation Sedov (1965) presents a solution for an unbounded free 

--t 

V 

P 
a (PI 

streamline flow past an arbitrary number of curvilinear arcs. Also given with the 
solution is an integro-differential equation which governs the curvature function. 
The solution is based on a general solution given previously by Keldysh & Sedov 
(1937) for mixed boundary-value problems. Larock & Street (1968) also present 
a non-linear solution for a cambered body in fully cavitating flow which embodies 
in it a mixed boundary-value problem which is closely related to the current work. 

2. General theory 
We study the steady, two-dimensional, irrotational flow of an incompressible, 

homogeneous fluid from a symmetric nozzle of arbitrary shape. The influences 
of gravity, viscosity and surface tension are neglected. Figure 1 shows half of the 
physical plane (z  plane) for this flow with the x co-ordinate chosen to coincide 
with the axis of symmetry. Far upstream at point D the channel is of unvarying 
half-width yl and conveys a flow at the uniform speed ql. The y co-ordinate axis 
is chosen to intersect the channel wall at  point A ,  where the curvilinear nozzle 
begins. Between point A and the lip of the nozzle at  point B is the nozzle bound- 
ary, each point P of which may possess an arbitrary inclination /3(P), 0 < /3 < rr. 
The flow separates smoothly at  point B and eventually contracts to a jet of half- 
width yz and uniform speed q2 at point C far downstream. 

In this problem we may write Bernoulli’s equation as 

p + $pq2 = constant, (1) 
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where p is the pressure, p is the constant fluid density, and q is the magnitude of 
the velocity. Also, for mass conservation 

41Yl = Q2Y2- (2) 

Thus, when the ratio y1/y2 is prescribed, unique values for q1/q2 and the upstream 
pressure are also set. Furthermore, we note in the absence of gravity that the 
speed qz prevails everywhere along the free streamline BC. In this work y2  and q2 
are chosen as a convenient reference length and flow-speed, respectively. 

In the plane of the complex potential W = r$ + i@ the image of the flow is an 
infinite slit, as shown in figure 2; here r$ is the velocity potential and @ is the 
stream function. The streamline @ = 0 is chosen to coincide with the free stream- 
line. The W plane and the physical z plane are related by 

A B * = 0  C 
-I 

D 

rbb =-I1Y1 

D C 

FIGURE 2. Plane of the complex potential W = # + i@. 

where cis the normalized complex velocity, and 0 is the argument of the velocity. 
In  terms of the more convenient variable 

w = In 5 = In (q/q2) + i( - O), (4) 

(3) can be rearranged to give z in the form 

where w and W are each assumed to be expressible as functions of the same 
variable of integration. Our method of solution is dedicated to this goal. 

The solution technique consists of two basic steps: (a) constructing conformal 
mappings between the physical and complex potential planes and a parametric 
half-plane, called the t plane, and ( b )  solving in this half-plane a well-posed mixed 
boundary-value problem for w(t). The solution requires an appropriate prescrip- 
tion of the curvature function P(t)  in the half-plane. We should remark that a 
hodograph or logarithmic hodograph plane is never directly used in the solution 
of the problem, so the fact that its shape is initially unknown is of no consequence. 
Complex variable theory is used, but the final results are easily expressed as real 
quadratures that can be evaluated quickly on a high-speed digital computer. 
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First we map the W plane to the t plane, as in figure 3, with the boundaries of 
the flow domain mapped onto the real line. The curvilinear nozzle boundary AB 
and the free streamline BC are mapped onto finite line segments by the following 
chosen point correspondence for points B, C, and D,  which assures uniqueness 
of the mapping (Churchill 1960): 

t = O y  
B: W = 0, 

c: w+ +m, t = - 1 ,  

D : W + - m ,  t + m .  

- 1  tA 

FIGURE 3. The parametric t-plane. 

By requiring that Im ( W )  = - I++,, = - q2 y2 for real t < - 1, the scale constant 
of the mapping is evaluated; the mapping is thus 

which allows us to write (5) in normalized form as 

Assuming that a suitable nozzle shape P ( t )  has been selected, we now note that 
either the real or imaginary part of w ( t )  is known on the entire real line, as shown 
in figure 3; specifically 

\ Im(w) = 0, -m < t < - 1 ,  

Re ( w )  = 0, - 1 < t < 0,  

Im(w) = /I($ 0 < t < tA, 
(9) 

This boundary-value specification is easily convertible into the Riemann-Hilbert 
problem itself, the solution of which is well known (Song 1963; Larock & Street 
1965). In  fact, the approach is also similar to that outlined by Sedov (1965). 

Introducing a solution H ( t )  to the homogeneous analogue of the problem posed 
in (9) as 

it can be shown (Larock 1969) that a solution for w ( t ) ,  valid in the entire half-plane 
Im ( t )  > 0, is 
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with the Quotient function 

since Im [&(t)] = Im[w(t)/H(t)] is known. In  general it is possible to add a 
series CA,ti to (12). This problem requires Aj = 0 for allj,  however, because of 
the dual requirements that the flow separate smoothly at  B and move with speed 

1 q1 at D. Therefore 
o(t)  = - H ( t )  

7T 

The analytical behaviour of w ( t )  is more fully displayed in the example to follow. 
The foregoing procedure has introduced an unknown constant tA into the solu- 

tion. It is determined by requiring at point D, where t -+ CO, that 

Now w(t )  is a fully known quantity, and the precise physical-plane configuration 
can be computed directly from (8). 

Finally, the local pressure coefficient, defined as 

may also be of interest. By using (1) and (4), we quickly find C, is directly expres- 
sible in terms of w and its conjugate T j  by the relation 

for any point in the flow. 
C, = l-exp[w+G], (16) 

3. The curvature function P(t)  

Ideally we would prescribe the local nozzle inclination P ( z )  at each point on 
the nozzle boundary so the shape of the nozzle is known a p r i o r i .  Due to the non- 
linear nature of the current solution, however, this is not directly possible since 
here /3 must be initially prescribed as a function oft, not x .  Nevertheless, great 
freedom is still possible in selecting the form of P(t) so that shapes of physical 
interest result, and yet w ( t )  can still be evaluated analytically. 

Consider, for example, a piecewise continuous, nth degree polynomial represen- 
tation for P n 

P ( t )  = C a , t i .  (17 )  
i= 1 

The coefficients a, can be chosen so that P(t) will assume a specified value Pk a t  
each particular juncture point t ,  and also at the end points t = 0 and t = ta. 
If /3 is to change discontinuously (jump) at  t J ,  then both P(t j )  and P(t;) are initially 
prescribed. 

To increase the descriptive capabilities of the curvature function, we may 
increase the degree of the polynomial and/or increase the number of intermedi- 
ate points tJ .  Due to the identity 

t" " 
= -+ p i t i - ,  (n = 1,2 ,3 ,  ...), 

q - t  7 - t  ,=I 

31-2 
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( 1  3 )  and (14) will involve integrals only of the forms 

regardless of the degree of the chosen polynomial in (17). On the other hand, the 
selection of mintermediate points t,requires us toevaluate theintegralsin (13 )  and 
( 1 4 )  separately over the intervals (0, tJ1) ,  (t,,, t,,), ..., (t,,, tA) ,  rather than inte- 
grating directly over the range (0, tA) .  No conceptual difficulties are encountered 
here, but the acquisition of additional flexibility in P(t) requires us to manipulate 
bulkier expressions for w(t ) .  

In  practice, rather simple curvature functions can be used to generate a wide 
variety of interesting and practical nozzle shapes which are worthy of study, 
as the following example will illustrate. We should remember, however, that the 
model is constrained to allow separation only at  point B. A curvature relation 
which presents an obtuse corner to the oncoming flow along AB will therefore 
produce a locally infinite velocity at  that corner. Although this is unrealistic, 
in the real case either the local influence of viscosity would prevent that occur- 
rence or the flow would separate at  that point, which should then be labelled 
point B for this theory. 

4. Example and solution 

and four prescribed local inclinations pk, k = 1, . . . , 4 .  We require at 
Let us consider a curvature function having one juncture point t J ,  0 c tJ < t A ,  

(19) 1 
1 ] ( 2 0 )  

t = 0, P(0) = P1; 

t = t7, P ( G )  = pz; 
t = G ,  PVJ) = P 3 ;  

= tA ,  p(tA) = P 4 '  

Thus P(t) possesses a possible jump discontinuity at tJ and so, in general, is piece- 
wise continuous. We shall prescribe the four values Pk and assume a linear varia- 
tion for P(t) over the intervals (0, t J )  and (t,, tA) .  Consequently we have 

1 
P(4 = tJ C(P2 - Pl) t + P1 tJ1 (0 6 t < t i ) ,  

P(t) = - [ ( P 4 - P 3 ) t + P 3 t A - P 4 t J 1  (t$ 6 t A ) .  
t A - t J  

In this case it is convenient to specify the ratio h = tJ/ta in addition to the PI, 
and the ratio y1/y2. 

The parameter tA is found from (14), which now takes the form 
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A simple successive-approximation procedure will enable a digital computer 
to find tA very quickly from this equation. 

In  this case expression (13)  for w ( t )  becomes 

when modified according to (1  8). By defining the quantities 

and 

for 0 < t < tA, we obtain on the nozzle boundary 

o(t) = M(t )  + iP(t). 

By substitution into (8) we obtain two parametric expressions for the co-ordinates 
of the nozzle boundary: 

(25b)  

For integration from point A towards point B we select to = tA, and for the chosen 
co-ordinate system xo = 0 and yo = yl. Then along the nozzle boundary the local 
pressure coefficient is easily calculated to be 

C P = 1-e*(t) (0 < t < tA). (26) 

The expression for o ( t )  on the free streamline is entirely imaginary, since there 
q = qz everywhere on the fluid surface. We shall write 

w(t) = iB(t) ( -  1 < t < O ) ,  (27) 
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3 

j=l 
B(t) = c B#), 

Again from (8) the free streamline co-ordinates are given parametrically by 

and 

By beginning the integrations from the nozzle tip, point B, we have 

to = 0, xo = xu = x(0)  and yo = yn = y(0). 

5. Results 
Figures 4 to 6 present several computed nozzle shapes together with listings of 

the pertinent parameters for each nozzle. Here b = yu is the nozzle half-width, 
and C, = y2/b is the contraction coefficient for the nozzle. 

As figures 4 to  6 show, even the relatively simple curvature function selected 
for the preceding examples is capable of producing a number of interesting and 
useful nozzle shapes. Strictly speaking, the solution procedure is inverse in the 
sense that the physical situation under study is not initially prescribed in the 
physical plane itself. In practice, this feature is merely an inconvenience. Only 
a modest amount of experience in selecting input parameters is needed before 
a given physical case (assuming the physical case is of a class which is represent- 
able by the chosen curvature function) can be reproduced with reasonable 
precision. To a large extent this is true because the chosen local nozzle inclinations 
Pk have direct physical meaning rather than being purely abstract parameters, 
and for this reason it is felt that an analogue of Villat's and Sedov's integro- 
differential equations for curvature would actually prove to be an analytical 
hindrance rather than an aid to this study. 

Figure 4 shows two similar nozzles for yl/y2 = 6 and equal local inclinations 
P = 70" at the nozzle lip where the free streamline separates smoothly from the 
solid boundary. In  case A the local inclination was everywhere a constant 70". 
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FIGURE 4. Effect of curvature for yl/yz = 6. Planar nozzle A :  PK = 70°, t~ = 24.6; 
b/yl = 0.2508, C, = 0.6645. Curved nozzle B :  p1 = 70°, pa = = 90°, h = 0.5, 
t~ = 18.8; bly, = 0.2516, C, = 0.6623. 

= B O O ,  

A B 

FIGURE 5. Variation of nozzle tip shape for yl/ya = 6 and h = 0.2. Nozzle tip A :  p1 = 45O, 
pa = p3 = p4 = 90°, t A  = 30-2; b/yl = 0.2301, C, = 0.7242. Nozzle tip B :  p1 = p2 = 45", 
p3 = p4 = goo, t A  = 66.2; b/y, = 0.2240, c, = 0.7439. 

y, = 2 0  

y2= 1.0 

FIGTJRE 6. The rounded nozzle: yl/yz = 2.0, h = 0.2, = #$ = OD, pa = p3 = 90°, 
t A  = 5.786; b/yl = 0.5923, c, = 0.8442. 
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In case B the local nozzle curvature varied linearly, as a function oft, from 70" 
at the lip to 90". These data suggest that C, is dependent primarily on the local 
inclination of t,he nozzle lip and not on the geometry away from the lip. Recently 
Henderson (1966, p. 206) has remarked similarly on this behaviour. 

The effect of a greater local difference in boundary geometry near the lip is 
illustrated in figure 5. We observe that only one prescribed input parameter, p2, 
was changed from case A to case B. The change in geometry changed values of 
bly, and C, each by approximately 2.5 per cent. 

A selected linear variation for P(t)  can result in nozzle boundaries which consist 
of very nearly circular-arc segments; an example is shown in figure 6 where the 
nozzle is composed of a 90' arc of radius R z 0.70 and a smoothly rounded exit lip. 
Figures 4 and 5 also show examples of this behaviour. 

An interesting feature of the sample in figure 6 is the point of inflexion present 
on the free streamline near the nozzle lip at  the location of the arrow. The calcula- 
tions from which this figure was prepared show a maximum streamline inclina- 
tion of 13.3" at this point. Far downstream this streamline becomes horizontal; 
by construction the nozzle lip inclination is Bl = 0 degrees, and one feature of all 
solutions using the present method is the existence of smooth separation at the 
lip. The presence of the inflexion point in the free streamline is caused by the 
reversed curvature or inflexion in the nozzle tip shape. Birkhoff & Zarantonello 
(1957) discuss such free-boundary inflexions more fully. 

Computational work for these examples was performed on the IBM 7044 
digital computer at the Computer Center of the University of California, Davis. 
Three distinct factors tended to increase execution time on a numerical example. 
Execution time lengthened when yl/y2 was increased, and it also increased when 
low local inclinations /3 were assigned to large portions of a given nozzle 
geometry. The result of either action was to require a large t ,  to satisfy (14), and 
thereby increase the range of integration in the quadratures (25), which para- 
metrically describe the nozzle configuration. And, of course, execution time would 
increase somewhat as a result of imposing increased accuracy requirements in 
the evaluation of the quadratures. 

The combined use of conformal mapping and the Riemann-Hilbert solution to 
a mixed boundary-value problem produces the theoretical solution for flow past 
a wide class of symmetrical nozzles of arbitrary shape from a channel of finite 
width. The judicious selection of an appropriate curvature function and use of a 
high-speed digital computer for evaluating the resulting expressions combine to 
make the theory usable in a practical way. 
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